
Operadic diagnosis in hierarchical systems
Spencer Breiner1, Olivier Marie-Rose2, Blake S. Pollard1, and Eswaran Subrahmanian1,3

1US National Institute of Standards and Technology, Gaithersburg, MD

2Prometheus Computing, Gaithersburg, MD

3Carnegie Mellon University, Pittsburgh, PA

NOT APPROVED FOR DISTRIBUTION. PLEASE DO NOT CIRCULATE.

This paper applies operads and functorial semantics to address
the problem of failure diagnosis in complex systems. We start with
a concrete example, developing a hierarchical interaction model for
the Length Scale Interferometer, a high-precisionmeasurement sys-
tem operated by the US National Institute of Standards and Technol-
ogy. The model is expressed in terms of combinatorial/diagrammatic
structures called port-graphs, and we explain how to extract an op-
erad LSI from a collection of these diagrams. Next we show how
functors to the operad of probabilities organize and constrain the
relative probabilities of component failure in the system. Finally, we
show how to extend the analysis from general component failure to
speci�c failure modes.

1 Introduction

Hierarchical systems are ubiquitous in nature, in engineering and in commerce.
We draw trees to represent anatomic features, component breakdowns and
command structures. Hierarchies use abstraction barriers and separation of
concerns to analyze and simplify complex problems into manageable parts.
However, to represent a system as a tree involves abstracting away the

interactions between its branches. An alternative viewpoint, exempli�ed by
models called port-graphs, emphasizes the leaves of the tree (components)
and the way that they are wired together to form a larger system. This ad-
ditional information is critical for system analysis, but such diagrams quickly

1

become unwieldy as the number of components grows.
Operads provide a nice mathematical formalism for interpolating between

these two viewpoints. Our goal in this paper is to demonstrate, in concrete
terms, the use of operads to organize both qualitative and quantitative de-
scriptions of hierarchical systems. To that end, we begin by modeling a spe-
ci�c real-world system, the Length Scale Interferometer (LSI), a device for
precise length calibration operated by the US National Institute for Standards
and Technology.
We begin with a brief sketch of the LSI, its purpose and its design, followed

by an informal review of operads. Next, we construct a speci�c operad LSI

based on the architecture of the LSI system and expressed in terms of combi-
natorial/diagrammatic structures called port-graphs. This forms the basis for
a functorial analysis of failure diagnosis. First, we can consider the relative
probabilities of component and sub-component failure as a functor LSI→ Prob.
Finally, we show how to integrate component level probabilities with more
speci�c information about speci�c failure modes.

2 The Length Scale Interferometer

The Length Scale Interferometer (LSI) [1] is a precision length-measurement
system operated by the US National Institute for Standards and Technology
(NIST). Customers from around the world send length scales, marked plates
or rods ranging in size from a millimeter to a meter, to be calibrated at NIST’s
Gaithersburg, MD campus. Using laser interferometry, the device accurately
measures lengths to better than one part in one million (0.7 µm error across a
one meter length), and can resolve markings on a scale down to 0.1 µm.
More formally, a nominal length scale is de�ned by two distances: the total

span D and the spacing d, where N = D
d ∈ N; for example, a typical meter stick

with millimeter hatch marks would have D = 1 m and d = 1 mm. The scale has
N + 1 hatch marks located a 0, d, 2d, . . . Nd = D. For a real scale we can set our
frame of reference Y by the �rst mark on the scale, but each of the others will
exhibit an error εi, and the purpose of the LSI system is to identify these errors.
The basic idea is simple enough. The scale is installed on a movable chassis,

which also contains one mirror of an interferometer. The length of the laser’s
path changes as the scale and chassis move, allowing us to infer the scale’s
position from the fringe count of the interferometer.

2

A calibration starts from the initial mark at y0 = 0 and records the current
fringe count f0 on the interferometer’s readout. The machine scans to the next
hatch mark y1, identi�ed by an optical system, and locks the position of the
chassis. The new fringe reading f1, along with the laser’s wavelength λ0 and the
index of refraction n, determines the associated error y1 = d+ε1 = λ0 ·n ·(f1−f0).
We do the same for each of the rest of the marks, noting that all distances and
errors are calculated relative to y0 (rather than yi−1).
In practice, there are a number of complications, of which the most sig-

ni�cant concern unavoidable �uctuations in the environment. Here we are
concerned with two main e�ects. First, the index of refraction, which we use
to calculate lengths and errors, depends on temperature.1 Second, thermal ex-
pansion means that the relative positioning of system elements changes over
time.
For example, the relative separation between (the �rst hatch mark of) the

scale and the chassis’ mirror will vary due to expansion of the metal that con-
nects them. Similarly, the scale itself expands, so that the positions of the
hatch marks and their errors will vary. Consequently, we should reformulate
the goal of the LSI as measuring length scales at a standard temperature of 20 ◦C.
This variation has two practical implications for the LSI system. First, we

must apply temperature-dependent corrections to the gross measurements of
the system (fringe counts). This is necessary both to calculate the true lengths
that were measured and to convert from these to the desired (temperature-
corrected) values. Second, in order to minimize correction error, the LSI must
maintain environmental values as close to the target as possible; to obtain the
0.7 µm accuracy mentioned above, the system must operate within .02 ◦C of
the target value.

3 Operads

A (colored, symmetric) operad is a mathematical structure for representing
hierarchical (tree-structured) composition and decomposition. The funda-
mental element of an operad is an operation α, which we usually write as
α : Q1, . . . , Qm → P (or more compactly, 〈Qi〉 → P). Every operation is pa-

1 The index of refraction also depends on pressure and humidity, but we ignore these in the interest of
simplicity.

3

rameterized by a list of input objects Q1, . . . , Qm and a single output object P .
When the input elements are not relevant, we may simply write α : P

If we have additional operations βi : Qi, operadic composition substitute
these for the “dummy variables” Qi to obtain a new operation α(β1, . . . , βn) (or
α〈βi〉). If βi has ni inputs, then the new composite has n1 + . . .+nm. Operadic as-
sociativity guarantees a well-de�ned composite for more deeply nested terms.
We will work with a typed variant of Spivak’s operad of wiring diagrams

[2]. We begin with a set of interfaces IType, which represent all the channels
of interaction that occur within our system. These include both physical in-
teractions (heat �ow)) and digital signals (temp measurements). Formally, we
specify IType at the outset, although in practice it can be inferred from usage
in system diagrams.
Given IType, a boundary is a set of ports P together with a map (often left

implicit) P → IType. We draw an interface as a box with |P |-many terminals,
each labeled by a type (distinguished, if necessary, by subscripts). For example,
the bath used in the LSI’s temperature regulation system has a boundary

Bath

heat

H2OsetPt
.

This indicates that the bath has three main interactions: heat �ow to the length
measurement enclosure, chilled water provided from an outside system and a
data stream that modi�es the set point of an internal heating controller. For
now our labels are just place-holders, but they will be re�ned as we elaborate
the model.
An operation α : 〈Qi〉 → P is a system architecture, modeled as a port-

graph, in which Qi are sub-component boundaries and P is an external system
boundary. The ports in P and Qi can be connected via wires, which are also
typed, and more properly described as hyper-wires given they can connect any
number of ports.
For example the LSI’s temperature control system, shown in Figure 1, has

three subsystems: one controls the ambient lab temperature (±0.2 ◦C), another
measures the internal temperature of the measurement enclosure (±.005 ◦C)
and a third manages the chilled water bath used to control the system’s tem-
perature.
Physically, the bath and the lab environment both impact the enclosure

through heat �ow and this, in turn, a�ects the length measurement subsystem

4

Lab

Box

Bath

TempSys
temp1 temp2

setPtlaser

H2O

heat1

heat2

Figure 1: A schematic decomposition of the LSI’s temperature regulation system.

via refraction of the laser. Another physical input to the system, a chilled water
source, is a shared resource controlled outside of the lab.
There are also digital �ows involved in the system. Two streams of tem-

perature data are produced by the lab and the enclosure. There is also a control
interaction, with a variable set point for a heating element in the bath. Dia-
grammatically, it can be useful to distinguish between physical and informa-
tional �ows; for example, the latter have only indirect e�ects on the temper-
ature of the system, in contrast to the physical inputs. Formally, the use of
di�erent notations for di�erent interaction types can be justi�ed by “typing
the types” via a function IType→ {physical,digital}.
We can succinctly represent a port-graph architecture α as a zig-zag of

functions, two of which commute over types:

C Qoo //

""

W

��

Poo

}}

IType

(1)

Here C = comp(α) ∼= {1, . . . , n} is the set of (black-box) components in the ar-
chitecture, Q =

∐
iQi is the set of internal ports, W is the set of wires and P

is the set of external ports. Both ports and wires are typed, and the resulting
triangles should commute.
Operadic composition acts by substituting one architecture into another.

For example, Figure 2 shows the result of substituting a low-level architecture
Mixer, Resevoir, Heater→ Bath for the Bath component of in Figure 1.
In the general case we may substitute for all Qi simultaneously, so suppose

5

Lab

Box

Mixer

Resevoir

Heater

TempSys

Bath

temp1 temp2

setPtlaser

H2O

heat1 heat3

heat2 temp

Figure 2: The operadic composition of two architectures Bath, Lab, Box → TempSys and
Mixer, Resevoir, Heater→ Bath.

that we have a decomposition (suppressing types) Di ← Ri → Vi ← Qi for each
of the components. Clearly the external ports P are unchanged by substitution
inside Qi. The set of internal boundaries is given by D =

∐
iDi; similarly the

internal ports of the architecture will be R =
∐
iRi.

Finally, we can compute the wire set for the aggregate by identifying an
outer wire w with an inner wire vi whenever they share an intermediate port
Qi. Formally, this corresponds to a pushout, and typing on the new wires exists
by virtue of the associated mapping property:

V +
Q
W

∐
iDi

∐
iRi

oo //
∐
i Vi

::

W

bb

Poo

∐
iQi

::ee

(2)

Equations 1 and 2 (along with the set IType) de�ne an operad PortGraph.
One nice feature of operads is that, although they allow us to represent hi-

erarchical information, they do not constrain us to work within a single hier-
archy. In particular, di�erent perspectives often suggest di�erent decomposi-
tions for a system, and we canmake sense of these distinctions using equations
in the operad.
An example is shown in Figure 3. On one hand we can decompose the

LSI system functionally (blue boundaries), separating the elements involved
in length measurement from those used for temperature control. The second
shows a more generic, control-theoretic perspective (red boundaries), sepa-
rating out components that produce observations (sensors) from those which

6

Functional Decomposition Control Decomposition

Lab
Box

BathChassis
Optics

Intfr

TempSysLengthSys

LSI

ϕ


λ




τ

Lab

Box Optics

Intfr

Chassis Bath

Sensors Actuators

LSI

κ


σ




α

Operad Equation: ϕ(λ, τ) = κ(σ, α)

Optics

Chassis

Intfr

LabBox

Bath

LSI

la
se

r

intensity

intensity

focus

drive

fringe

heat1

heat2

setPt

H2O

temp

TempSys

LengthSys

Sensors

Actuators

Figure 3: Operad equations represent common refinements between distinct hierarchies.

modify the state of the system (actuators). We could also consider a “geo-
graphic” decomposition based on the physical access to the components (e.g.,
inside/outside the system enclosure). An equation in the PortGraph operad in-
dicates that two incompatible hierarchies (e.g., function vs. control) have a
common re�nement at a lower level of abstraction.
On �rst encounter, it can be easy to mix up port graph diagrams, which

represent speci�c architectures, with the PortGraph operad, which represents all
possible architectures. A speci�c system, as represented by a collection of dia-
grams, can be compiled into a “sub-operad” (faithful functor) LSI ⊆ PortGraph

involving only the boundaries and architectures that appear in our diagrams.2

A complete description of the LSI operad, compiled from Figures 1, 2 and 3, is
given in the Appendix, Tables 3 & 4.

2However, note that diagrams with nested interfaces encode multiple architectures; six operations (ϕ,
λ, τ , κ, σ and α) and an equation can be extracted from the single diagram in Figure 3.

7

4 Component Failure

In the last section we constructed an operad LSI whose operations are hierar-
chically organized architectures of the Length Scale Interferometer. Once we
have laid out the architecture of the system, we can use it to structure system
analyses.
The general principle of functorial semantics is that a model can be regarded

as a mapping (called a functor) from architectural (syntactic) elements to com-
putational (semantic) ones, but that this mapping must be assigned in a way
that respects the compositional structure of the syntax. Probability provides a
good example.
A very simple model of component failure might conclude based on histor-

ical data that a failure in the LSI will be located in the temperature regulation
subsystem 60% of the time, and in the length measurement subsystem the re-
maining 40% of the time. The probability distribution p = (ls 7→ 40%, ts 7→ 60%)

is itself an operation in an operad, and we can think of the failure model as a
mapping from the functional architecture ϕ to the distribution p.
Suppose, moreover, that we also know the probabilities of failures within

the temperature regulation system, which can involve the bath (ba 7→ 80%),
the lab temperature system (lb 7→ 10%) or enclosure (box) temperature mea-
surement system (bx 7→ 10%). Relative probabilities compose by multiplica-
tion (conditioning), so that given a fault somewhere in the LSI, there is a
80%× 60% = 48% chance that it involves the bath. This is an instance of func-
toriality: composite architectures map to composite distributions.
More precisely, there is an operad of probabilities called Prob. Prob is a

“plain” operad, so that each operation has a �xed number of inputs (arity) m
(in contrast to PortGraph, where each operation π has a “shape” 〈Qi〉 → P). An
operation Prob is just a probability distribution p = 〈i 7→ pi〉i<m, and its arity is
the size of the index set m. The operadic (tree-structured) composition of p
with m-many additional distributions qi = 〈j 7→ qij〉j<mi is de�ned by

p(q1, . . . , qn) =
〈
(i, j) 7→ pi · qij

〉
, (3)

where the index set is the collection of pairs (i < m, j < mi).
Now we can think of the simple failure model described above as a functor

fail : LSI → Prob. The data associated with a speci�c instance is shown in Table
1. It sends each architecture Q1, . . . , Qn → P to a probability distribution on n

8

LSI Component Failure Model

ϕ(ls, ts)
ls 7→ 40%

κ(sn, ac)
sn 7→ 28%

ts 7→ 60% ac 7→ 72%

λ(la, op, ch)

la 7→ 10%

σ(lb, bt, op, la)

lb 7→ 21.4%

op 7→ 30% bt 7→ 21.4%

ch 7→ 60% op 7→ 42.9%

τ(ba, bx, lb)

ba 7→ 80% la 7→ 14.3%

bx 7→ 10%
α(ch, ba)

ch 7→ 33.3%

lb 7→ 10% ba 7→ 66.7%

β(ht,mx, rs)

ht 7→ 50%

mx 7→ 30%

rs 7→ 20%

Table 1: A probabilistic model of component failure presented as an operad functor LSI→ Prob.

elements, which should be interpreted as the relative probability of a failure in
Qi, given a failure in P .
In order to de�ne a functor, these probability assignments should satisfy the

LSI’s composition equation (Figure 3). This de�nes some global constraints on
how probability can be apportioned between di�erent systems. For example,
if we know that problems with actuators are responsible for 72% of faults in
the LSI (κ : ac 7→ 72%), then we can infer that the bath is twice as likely to
malfunction as the chassis. After all, the bath is equally likely to fail whether
we think of it as an actuator or a temperature system component. All in all,
the LSI coherence equation ϕ(λ, τ) = κ(σ, α) generates six probability equations,
corresponding to the six components involved in the composed architecture.

in : Intfr 7→
ϕ︷︸︸︷

40%×
λ︷︸︸︷

10% = 4% =
κ︷︸︸︷

28%×
σ︷ ︸︸ ︷

14.3%

op : Optics 7→ 40%× 30% = 12% = 28%× 42.9%

ch : Chassis 7→ 40%× 60% = 24% = 72%×
α︷ ︸︸ ︷

33.3%

ba : Bath 7→ 60%×
τ︷︸︸︷

80% = 48% = 72%× 66.7%

bt : Box 7→ 60%× 10% = 6% = 28%×
σ︷ ︸︸ ︷

21.4%

rt : Lab 7→ 60%× 10% = 6% = 28%× 21.4%

(4)

Even in the absence of data we can represent these equations symbolically–the
top line corresponds to ϕ(ls) · λ(in) = κ(sn) · σ(in)–and in this form we can view

9

operadic coherence equations data integrity constraint or rules of inference.

5 Failure Modes

Though the operadic structure of the LSI model is useful for organizing fail-
ure probabilities, our analysis so far is de�cient in that it considers only the
components that fail, and not what goes wrong with them. In this section
we describe a larger operad LSI ⊆ LSIFail constructed from the failure modes of
the LSI, and show how an extension of our original probability functor assigns
error-speci�c probabilities consistent with the original model.
We start by associating each boundary P with a set of failure modes Err(P).

These should be referenced to explicit features of the component boundary. For
example, Err(TempSys)will include at least four errors corresponding to temper-
ature deviations in the lab and in the measurement enclosure: temp1 > 20.5 ◦C,
temp1 < 19.5 ◦C, temp2 > 20.02 ◦C and temp2 < 19.98 ◦C. Additionally, we will as-
sume that each set Err(P) contains a distinguished element ∗ = ∗P representing
an unspeci�ed failure (like those discussed in the previous section).
Furthermore, given an architecture α : Qi → P we can identify which errors

in Qi might lead to a given error in P . This de�nes a causality relation

(e, f) ∈ Err(α) ⊆ Err(P)×
(∐

i

Err(Qi)
)

(5)

indicating that f may lead to e in the context α. Our only restriction is that
(e, ∗) ∈ Err(α) implies then e = ∗ as well; intuitively, speci�c failure modes can
cause generic errors, but not vice versa. Formally, this data de�nes an functor
from LSI to the monoidal category of relations (Rel,+, ∅); the ∗ elements and
their restrictions can be introduced using a sort of “operadic monad” A 7→ A+1

on Rel.
Next we would like to associate relative probabilities with these failure

modes, and to do so in a way that is consistent with our existing model of
component failure. To that end we construct an extension LSIFail ⊇ LSI.
Intuitively, LSIFail is organized into two layers, as shown in Figure 4. The

lower layer consists of generic errors (P, ∗) and forms a copy of the original LSI

operad. The upper layer contains two types of failure modes: a priori failures
(P, e) and relativized failures (α, e, f); these interact via re�ned versions of the
LSI operations. Composition within each layer can be computed by reference

10

〈(
α〈βi〈γj〉〉, e, h

)〉
γe,g

j

//

errSk,e

��

βi〈γj〉e,f

**〈(
α〈βi〉, e, g

)〉
βe,f

i

//

errRj ,e

��

α〈βi〉e

))〈
(α, e, f)

〉
αe

//

errQi,e

��

〈
(P, e)

〉
errP

��〈
(Sk, ∗)

〉
γ∗

j

//
〈
(Rj , ∗)

〉 β∗
i //

α〈βi〉∗

33

〈
(Qi, ∗)

〉 α∗
// (P, ∗)

Figure 4: Objects, operations and equations of LSIFail.

to LSI. The two layers are connected by additional “vertical” operations that
decompose generic errors into speci�c failure modes. “Diagonal” composites
of horizontal and vertical operations are governed by a naturality condition
err(α) = α(err) (suitably parameterized).

Definition 1. Given Err : LSI→ Rel, the LSIFail operad is defined by the following data
Objects:

{
(α, e, f) |(e, f) ∈ Err(α)

}
Operations: βe,f :

〈
(α〈β〉, e, g) | (f, g) ∈ Err(β)

〉
−→ (α, e, f)

errQ,e :
〈
(α, e, f) | (e, f) ∈ Err(α)

〉
−→ (idQ, ∗, ∗)

Composition: βe,f 〈γe,g〉 =
(
β〈γ〉

)e,f
β∗,∗〈errR,e〉 = errQ,e〈βe,f 〉

Several special cases are indicated in Figure 4–generic errors (P, ∗), a priori
failure modes (P, e), operations α∗, αe and errP–all corresponding to the re-
striction α = idP (whence e = f by functoriality of Err). These satisfy simpli�ed
versions of the composition relationships as indicated in the diagram.
Now consider a probabilistic model fail : LSIFail → Prob. The map P 7→ (P, ∗)

exhibits LSI as a full suboperad of LSIFail, so we can think of this as an exten-
sion of the original model fail. The operations and equations of LSIFail all have
natural interpretations in these terms, shown in Table 2. Note that the need
to represent relativized failures (α, e, f) is tied to the presence of summations
in the last two equations.

6 Conclusion

We close by noting, brie�y, some limitations of the present paper. Though our
model is based on a real-world system, it is much too coarse to use in practice.
A true predictive model would require a much more detailed decomposition of

11

Operations Equations

α∗ 7→ pr(Qi|P) α∗〈β∗
i 〉 = α〈βi〉∗ 7→ pr(Rj |P) = pr(Rj |Qi) · pr(Qi|P)

αe 7→ pr(f |e) αe〈βe,f
i 〉 = α〈βi〉e 7→ pr(g|e) = pr(g|f, e) · pr(f |e)

βe,f 7→ pr(g|f, e) βe,f 〈γe,g〉 =
(
β〈γ〉

)e,f

7→ pr(h|f, e) = pr(h|g, e) · pr(g|f, e)

errP 〈αe〉 = α∗〈errQi,e〉 7→

errP 7→ pr(e|P) pr(f |e) · pr(e|P) =
∑

e pr(f |Qi, e) · pr(Qi|P)

errQ,e 7→ pr(f |Q, e) errQ,e〈βe,f 〉 = β∗〈errRj ,e〉 7→∑
e pr(g|f, e) · pr(f |Q, e) =

∑
e pr(g|Rij , e) · pr(Rj |Q)

Table 2: A probabilistic interpretation of the LSIFail operad.

the system. Similarly, the failure model presented in Section 4 is not based on
real data, but rather selected to illustrate certain points. However, we intend
to re�ne the model over time and, eventually, hope to produce a reference
implementation for categorical systems modeling.
Second, the models presented here are purely static, but it would be prefer-

able to incorporate sensor observations into our failure predictions. Here we
should be able to leverage existing work on the interpretation of port-graphs as
behavioral constraints on dynamical systems. Our next goal is to develop a dy-
namical model of system and component behaviors including both functioning
and malfunctioning components. By substituting malfunctioning component
models into the larger dynamical system, we can estimate the likely sensor
readings for each failure mode and use these to assess the relativized failure
probabilities discussed in Section 5.
Disclaimer: Commercial products are identi�ed in this article to adequately specify the material.
This does not imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply the materials identi�ed are necessarily the best available for the
purpose.

References

[1] John S Beers and William B Penzes. The NIST length scale interferometer. Journal of Research
of the National Institute of Standards and Technology, 104(3):225, 1999.

[2] David I Spivak. The operad of wiring diagrams: Formalizing a graphical language for
databases, recursion, and plug-and-play circuits. arXiv preprint arXiv:1305.0297, 2013.

12

https://arxiv.org/abs/1305.0297

A LSI Operad

The appendix collects an explicit description of the LSI operad discussed throughout the paper.
Interface types and boundaries are shown in Table 3. Operations, along with combinatorial
descriptions of the associated port-graph architectures, and an equation are shown in Table 4.

LSI System Boundaries

Boundary Ports

Intfr laser, fringe

Chassis laser, focus, drive

Optics focus, intensity

Bath heat, H2O, setPt

Box heat1, heat2, laser, temp

Lab heat, temp

Mixer mix

Resevoir heat1, heat2, mix, H2O

Heater setPt, heat

TempSys laser, H2O, temp1, temp2, setPt

LengthSys laser, intensity, fringe, drive

Sensors intensity, fringe, temp1, temp2,

focus, heat, laser

Actuators H2O, drive, setPt, focus, heat, laser

LSI H2O, intensity, fringe, temp1,

temp2, setPt, drive

IType =

{
heat, laser, H2O, focus, mix, temp,

fringe, intensity, drive, setPt

}

Table 3: Objects and types for the LSI system operad, compiled from Figures 1, 2 and 3.

13

LSI System Architectures

ϕ: (ls : LengthSys, ts : TempSys) −→ LSI

`.laser = t.laser

λ: (ls : Intfr, op : Optics, ch : Chassis) −→ LengthSys

ch.focus = op.focus

ch.laser = ls.laser

τ : (ba : Bath, bt : Box, rt : Lab) −→ TempSys

bt.heat1 = ba.heat

bt.heat2 = rt.heat

κ: (sn : Sensors, ac : Actuators) −→ LSI

s.heat = a.heat

s.laser = a.laser

s.focus = a.focus

σ: (rt : Lab, bt : Box, op : Optics, ls : Intfr) −→ LengthSys

bt.heat2 = rt.heat

bt.laser = ls.laser

α: (ch : Chassis, ba : Bath) −→ Actuators

β: (ht : Heater,mx : Mixer, rs : Resevoir) −→ Bath

rs.mix = mx.mix

rs.heat2 = ht.heat

Architectural Coherence Equation
ϕ(λ, τ) = κ(σ, α)

Table 4: Architectures (operations) from the LSI system operad. Each architecture can be described
as a set of equations between component ports. The architectural coherence equation corresponds to
the diagram in Figure 3.

14

	Introduction
	The Length Scale Interferometer
	Operads
	Component Failure
	Failure Modes
	Conclusion
	LSI Operad

